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Three-body S-state wavefunctions: symmetry and degrees of 
freedom associated with normalisation of the exact 
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Abstract. The few-particle Schrodinger equation does not define the symmetry of the 
wavefunction, which must be chosen to match the symmetry of the particles. It is shown, 
by reference to the S-states of a three-particle system, that the symmetry does constrain 
degrees of freedom associated with normalisation of the exact wavefunction. The first 
particle is treated as infinitely massive, and distinguishable. The systems where the second 
and third particles are (i) distinguishable, ( i i )  indistinguishable with a symmetric wavefunc- 
tion (bosons) and (iii) indistinguishable with an antisymmetric wavefunction (fermions) 
may be treated as special cases of a continuous description of particle symmetry. Cases 
(ii) and (iii) are opposite extremes in the analysis. 

1. Introduction 

In recent years there has been increased interest in solving the Schrodinger equation 
for few-body systems exactly, using spherical polar coordinates (Newman 1973, Davis 
and Maslen 1982a, b, 1983a, b). Substitution of a series of sufficiently general form 
into the equation yields recurrence equations relating coefficients which, when deter- 
mined, specify the wavefunction completely. 

Although few-particle systems have been studied successfully in interparticle coor- 
dinates (Hylleraas 1929) and in hyperspherical coordinates (Haftel and Mandelzweig 
1983), spherical polar coordinates have some advantages. The recurrence equations 
derived from the Schrodinger equation using spherical polar coordinates are simpler 
than that obtained using interparticle distances. The asymptotic form of the wavefunc- 
tion is established more easily than that for hyperspherical coordinates. For example 
the form of an atomic wavefunction in the asymptotic limit of one electron being an 
infinite distance from the nucleus is not obvious in hyperspherical coordinates. 

In spherical polars simplification of at least the low-order coefficients has been 
achieved for the ground state of helium (Davis and Maslen 1983a). A compact form 
for the exact wavefunction will be obtained if that simplification can be extended to 
the higher-order coefficients. 

A power series in r ,  and r2 does not yield physically acceptable solutions. Logarith- 
mic terms must be introduced (White and Stillinger 1970, Morgan 1978, Haftel and 
Mandelzweig 1983). It is convenient to use a solution with different analytical forms 
in the regions r ,  > r2 and r ,  < rz .  
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The solution must be normalisable and  must belong to the domain on which the 
Hamiltonian operator is Hermitian. This Hermiticity condition requires continuity of 
the function and the first derivatives at the boundary rl = r2 (Davis and Maslen 1982b). 
The lowest-order coefficients derived from the recurrence relation and  the boundary 
conditions provide a starting point from which most of the remaining coefficients can 
be evaluated. The energy eigenvalues and  the remaining coefficients are determined 
by the requirements for the normalisability of the wavefunction. 

The three-particle system where two of the particles interact with the third but not 
with each other is a special case of the general three-particle system. This case is easily 
solved as the wavefunction can be expressed as a product of two two-particle wavefunc- 
tions. 

A system of particular interest is a pair of identical particles in the field of a third 
where all particles interact with each other. There are two distinct cases, described by 
symmetric or antisymmetric wavefunctioris, corresponding to bosons and fermions 
respectively (Schiff 1968, p 42). 

These special cases of the general three-particle system are often treated separately. 
The work below describes a unified treatment u p  to the point of applying the normalisa- 
bility condition. 

Although the Schrodinger equation does not depend on particle symmetry for its 
validity, it is shown below that the terms to be evaluated using the normalisability 
condition vary with the symmetry of the wavefunction. This is at first surprising as 
there is no obvious linking of the square-integrability and Hermiticity conditions with 
the symmetry of the formal solution. 

2. Equations for three non-identical particles 

The S-state wavefunctions can be chosen to be functions of the coordinates rl ,  rz and 
R = cos 0 as shown in figure 1. 

For convenience it is assumed particles 1 and  2 have identical mass and the third 
particle has infinite mass. Particles 1 and 2 are distinguishable if the 1-3 and 2-3 
interparticle potentials are different. The Hamiltonian in the Schrodinger equation 

Hq(r1, r2, R)  = EWr1, 12,  a) 

H = -+(V;+V:)+ V(rl,  rz ,  R)  

(1) 

(2) 

may be written 

2 

1 

3 

Figure 1. Coordinates for describing the S-states of a three-particle system where particle 
3 is massive. 
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where V is comprised of three interparticle potential terms. These are not stated 
explicitly but are contained in V( r l ,  r2, R)  so as to keep the nature of the interparticle 
potentials general. For the coordinates r l ,  r2, fl the Hamiltonian becomes 

As the Legendre polynomials Pf(n) (Abramowitz and Stegun 1965) are eigenfunc- 
tions of the differential operator, that is, 

it is natural to use a multipole expansion of the wavefunction. The expansion is similar 
to that described and justified by Davis and Maslen (1982b), 

where I ,  p ,  q 3 0. For square-integrability at the origin non-zero coefficients are restricted 
to 

t+jz-l. (4) 

Ei(x) is the exponential integral (Abramowitz and Stegun 1965). The term in square 
brackets may be expressed as the sum of a log function and a power series with a 
form that depends on q. Parameter q may be chosen to optimise the convergence of 
the coefficients C,jfp and CLfp. Parameters A I  and A 2  are chosen so that the exponential 
terms in (3) match the asymptotic behaviour of the wavefunction. The inclusion of 
logarithmic terms provides the flexibility required for derivative continuity at the 
boundary rl = r2 (Davis and Maslen 1982b). Inclusion of Legendre functions of the 
second kind, Ql(n), in the expansion is forbidden by the requirement that eigenfunc- 
tions of the Hamiltonian (2) belong to the domain for which it is Hermitian. The 
expression for 'P( r l ,  r2 ,  0) belongs to that domain, and also satisfies the requirement 
of local square-integrability at the origin. 

Davis and Maslen (1982b) obtained numerical estimates of the coefficients of the 
series for the ground state of helium. They found that successive coefficients of the 
series in rl and r2 decrease by approximately one order of magnitude. Although the 
series in P,(R) converges less rapidly, the smooth variation of the coefficients with I 
for large 1 suggests the possibility, eventually, of summing analytically over this index. 

2.1. Solution of the diflerential equations 

Substituting the function (3) into equation (1) provides two recurrence equations which 
relate the coefficients Cy, and Chfp within each of the series. The recurrence equations 
do not specify all the coefficients completely. The solution must be completed by 
applying the boundary conditions. 

Hermiticity requires continuity of the function and its first derivatives at rl = r2 
(Davis and Maslen 1982b). Satisfying the normalisability condition requires an 
examination of the asymptotic form of the coefficients, some of which are necessarily 
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undetermined during the initial calculation. Normalisability also determines the energy 
eigenvalues. 

If the formal series (3) had included all positive and  negative powers of rl and r,, 
it would be impossible to choose an  initial group of coefficients from which the 
recurrence equation could specify the remainder. However the square-integrability 
and Hermiticity conditions restrict the allowed powers of r ,  and r, to a semi-infinite 
region. The lowest order coefficients in this region are determined by the recurrence 
and derivative continuity equations, providing a natural starting point for calculating 
the remaining coefficients. 

The recurrence equation obtained for C,, by substituting the trial series (3) into 
the Schrodinger equation is 

{ 4 i + 21 Cl +z,lp + I 1, j + 2 } C, +2 r p  

= - ( i + 2)(A I - qp 1 Cl+ , I p  - A2(j + 2)  C,,+, r p  + (2i + 5 )/ 2 c,+2,1~+ I 

+ [ ( P + f - A I I Ct + i l ip + I + 1 C, + z , /p+2 

+ ( E + $A + +A + f p 2  q2  - A 1pq - Vop ) C,Ip ( 5 )  

where {a, b }  = [ a ( a  + 1 )  - b ( b  + 1)]/2. The effect of the potential term in the Hamil- 
tonian, V ( r l ,  rz ,  a) is represented by VopC,,rp. The recurrence equation for Chip is 
identical to (5) with the 1-3 and 2-3 potentials in V,, interchanged. 

The Hermiticity condition restricts non-zero C,, and CLIP to the region (Davis and 
Maslen 1982b) 

j 2 0 .  (6) 

The artificial boundary due  to the different analytical forms of 9 in the regions rl > rz 
and rI < r2 further restricts the coefficients. The Hermiticity condition requires the 
wavefunction, 9, and its first derivatives a 9 / a r l ,  #/ai- ,  to be continuous at the 
boundary rl = r2.  

Applying the three continuity conditions yields equations relating C,, to Cklp. 
Using the restrictions (4) and (6) the coefficients may be derived systematically. 

Continuity of 9 requires that 
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All coefficients with j < 1 are proportional to other coefficients with smaller values 
of j .  When restriction (6) is applied all Cijfp with j < 1 vanish. C,,, is independent of 
the coefficients with lower j and is not required to be zero. Therefore applying restriction 
(6) to the recurrence equation requires non-zero Cyfp and CLIP to have 

j z  1. (10) 

i+jaO. ( 1 1 )  

By a similar argument restriction (4) requires non-zero CO, and CLIP to have 

The coefficients are calculated using a procedure similar to that described by Davis 
and Maslen (1982b) for the restricted case of symmetric S-states. This applies for any 
potential V which is not as singular as r;* or r;’ at the origin. Writing recurrence 
equation ( 5 )  in the shorthand form 

{ 1, i ’  + 2)C i’+2j’1p + { I ,  j‘ + 2)C ,‘,‘+zip = - R ( k ,  1, g ,  p )  (12) 

(where k = i + j = i’+ j’+ 2 and g = j ’  - 1 + 2), the coefficients on the left-hand side belong 
to the line i + j = k. Similarly 

(13 )  

Because V is not as singular as r;’ or r;’ at the origin the functions R ( k ,  I ,  g ,  p )  and 
R’(k ,  1, g ,  p )  contain only coefficients with higher values of p or lower values of k. 
These are already known. 

Likewise functions D( k, I ,  p )  and D’( k, 1, p )  in the derivative continuity equations 
(8) and (9) contain known coefficients with higher values of p or lower values of k. 

Using recurrence equations (12) and (13 )  all C,, with j > I can be written in terms 
of Ck-fffp and R( k,  1, g ,  p ) ,  and all CLIP with j > 1 can be written in terms of CL-fffp and 
R ’ ( k ,  I, g,  p ) .  The continuity equation (7)  becomes 

{ I ,  i ’ + 2 } C ~ ~ + 2 j ~ f p + { l , j ’ + 2 } C ~ , ~ + 2 f p =  - R ‘ ( k ,  1, g , p ) .  

where 

W ( k ,  l , g ) = + 3 F , ( l ,  k / 2 + 3 / 2 , g / 2 + 1 / 2 - k / 4 ; g / 2 + 1 , 1 + g / 2 + 3 / 2 ;  1 )  

is a generalised hypergeometric function (Bailey 1935). 
Equations (8) and (9) yield 

Y ( k ,  o ) c k - f f l p + z ( k ~  1, o ) ~ ~ - l f l p  

33 

= - 2  c g - ’ ( 2 l + g + l ) - ’ [ Y ( k , I , g ) R ( k ,  5 g , p )  
g = 1  
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where 

Y ( k ,  1, g )  = % X ( k ,  4 8 )  + k W ( k ,  1, g)1  

Z ( k ,  1, g )  = % x ( k ,  1, g)- k W ( k ,  1, g ) l .  

X ( k ,  1, g )  = ( k /  2 - g - 1 + 1 ) 3 F2( 1, k /  2 + 31 2 ,  g /  2 

+ 1 / 2 - k / 4 + 1 / 2 ; g / 2 + 1 , l + g / 2 + 3 / 2 ;  1)  

is equivalent to the function reduced by Davis and Maslen (1983a). Equations (14), 
(15) and (16) are linear dependent and equations (15) and (16) are sufficient to calculate 
Ck-[I[, and CL-rrrp as long as the determinant 

Y’( k, ( 0 )  - Z’( k, 1,O)  # 0 

that is 

k X ( k ,  l ,O)W(k , l ,O)#O.  (17) 

Once these coefficients have been calculated the remaining coefficients in the line 
i + j  = k are determined by the recurrence equations. 

Functions X (  k, 1, g )  and W (  k, 1, g )  are derived from the kinetic energy operator 
of the Hamiltonian ( 2 )  and are thus independent of the potential. 

2.2. The degrees of freedom 

The degrees of freedom provided by the coefficients C k - ( l / p  and CL-rrfp enable the 
continuity and  derivative continuity equations to be satisfied for a non-zero determinant 
(17). When the determinant is zero equations (15) and (16) cannot be used to calculate 
C k - f / f p  and C;-Ilf,. The degree of freedom required by the continuity and  derivative 
continuity equations is then provided by C k - l f / p + ,  and Ck-fffp+l. As R ( k ,  1, g, p )  and 
R’( k, 1, g, p )  contain coefficients with higher values of p ,  the p = P + 1 coefficients are 
used to satisfy the p = P equations. This is possible ( i )  because there is a maximum 
value of p ( p , , , )  where any coefficients with p > pmax are zero, and (ii) because the 
p = P +  1 equations d o  not determine the p = P +  1 coefficients entirely when k = 21 + 2n. 

At this stage some p = O  coefficients remain to be determined. The derivative 
continuity condition is satisfied for arbitrary values of these coefficients, so these are 
referred to as ‘arbitrary coefficients’. These are completely specified by the requirement 
that the wavefunction be normalisable (Davis and  Malsen 1983b). 

To calculate when the determinant (17) vanishes, X ( k ,  1,O)  and W ( k ,  1,O)  may be 
written in hypergeometric from 

X ( k ,  5 0 )  = ( k / 2  - I +  1) 2 F l ( k / 2 + 3 / 2 , 1 / 2  - k / 4 +  112;  1 + 3 / 2 ;  1) 

W ( k ,  l , O ) = f , F I ( k / 2 + 3 / 2 , 1 / 2 - k / 4 ;  1 + 3 / 2 ;  l ) ,  

and simplified using standard formulae (Abramowitz and Stegun 1965) to 
_r (1+3 /2 )22+k /2 -1  $7 1/2 

T ( 1 / 2 + k / 4 +  l ) r ( 1 / 2 -  k / 4 )  
X ( k , 1 , 0 ) =  

r ( 1 / 2 +  k / 4 + 3 / 2 ) r ( 1 / 2 -  k / 4 +  112)’ 
W (  k, 1,O) = 

X (  k, 1,O) vanishes whenever k = 21 + 4n : n = 0, 1 , 2 ,  . . . whereas W (  k, 1 ,O)  vanishes 
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whenever k = 21 + 4 n  + 2 ;  n = 0,  1 ,2 ,  . . . that is the determinant vanishes when k = 0, 
21 + 2n. 

The coefficients C k - l l l p  and CL-,,,, with p > 0 must have values which satisfy the 
continuity and  derivative continuity equations for k = 0, 21 + 2n. For k = 0, 21 + 2n  the 
only coefficients left undetermined are Ck-IIfo. 

For k = 21 + 4 n  + 2 the equations determining c k - l f l p + l  and CL-lllp+l may be sum- 
marised as 

f W ( k ’ l ’ g )  [ R ( k ,  l , g , p ) - R ’ ( k ,  l , g ,p ) ]=O 
g = I  g ( 2 1 + g + l )  

The order of solution is that of decreasing p ,  starting from the maximum value, pmax, 
which increases by one at k = 21 + 4 n  +2 ,  n = 0,  1 ,2 , .  . . . All c k - l f l p  and CL-fflp are 
determined unless p = 0. Putting p + 1 = 0 in equation ( 2 0 )  gives a value for c k - l l l o +  

CL-fllo. Similarly pmax increases by one for k = 21 +4n,  and the equations determining 
C k - f l f p + l  and cL-fffp+l are 

f x(  k’ I’ g ,  [ R( k, 1, g, p )  + R’( k ,  I ,  g, p ) ]  + D( k, 1, p )  = 0 
g=1  g ( 2 1 + g + l )  

m 
= - 2  2 W(k’ g ,  [ R ( k ,  1, g, p +  1) - R‘(k ,  I ,  g , p+  111. 

g = I  g ( 2 1 + g + l )  

Putting p +  1 = 0 determines C k - f f f O -  CL-rlro. 
The determinant (17) also vanished for all I when k = 0, suggesting the existence 

of arbitrary coefficients for all 1. Examination of the continuity and derivative continuity 
equations shows that C-fffo = CLflfo = 0 for 1 > 0 and 

~ 0 0 0 0  = CA000 ( 2 3 )  
is the only arbitrary coefficient with k = O .  The values of C k - I I l O ,  k = 2 1 + 2 n ;  n = 
0 , 1 , 2 , .  . . are determined by the requirement of a normalisable wavefunction (Davis 
and Maslen 1982b, 1983b). The special case of Coooo is evaluated by equating the 
norm of the wavefunction to unity. 

3. The symmetric case 

Consider a symmetric wavefunction 
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This is identical to the series for the general three-particle equation (3 )  when 

The recurrence equation is identical to ( 5 ) .  Continuity is conferred by the symmetry. 
Derivative continuity requires 

C ( i - j ) C g l p =  - C c , / p + ~ - P q  C C i j l p + ( A l - A 2 )  C,,p=-D(k, 
k k - l  k - I  

Function D(k,  1, p )  is similar to that used in the general three-particle equations. 
Non-zero coefficients are restricted to the same region of the ij plane as for three 
non-identical particles (10, 1 1 ) .  The method of solution of the equations is identical. 

The equation 

determines the g = 0 coefficient. 
Arbitrary coefficients arise whenever X (  k, 1, 0) = 0. The expression for X (  k, I, 0), 

equation (18 ) ,  shows this occurs whenever k = 21 +4n, n = 0 , 1 , 2 ,  . . . . Therefore the 
first arbitrary coefficient, to be evaluated by setting the norm equal to unity, occurs at 
k = 0 .  The infinite series (24) starts at k = O  and propagates to higher values of k. 
When X (  k, 1,O)  = 0 the p > 0 cofficients are calculated by requiring the right-hand side 
of (20) to vanish, that is 

x(k’ ‘’ g ,  
R ( k ,  I ,  g, p )  + D( k, 1, p )  = 0.  

The ck-/l,O for k = 21+4n where n = 0, 1 , 2 , .  . . are determined by the requirement of 
a normalisable wavefunction. 

When condition (25) is applied and the 1-3 and 2-3 potentials are equal, the 
functions used in the general three-particle equations satisfy the relationships 

In this limit the continuity equation (14) vanishes and the derivative continuity 
equations ( 1 5 )  and (16) become equal to (26). The equations for k = 21+2n + 2  were 
(19) and (20). Equation (19) vanishes and (20) becomes equal to (26). The equations 
for k = 21+4n, (21) and (22), reduce to equation (27). Condition (25) places an extra 
restriction on the arbitrary coefficients of the general three-particle series. This com- 
pletely specifies the arbitrary coefficients at k = 21+4n + 2  but still leaves those with 
k = 21 + 4n undetermined. 

Thus in the limiting case of the two identical finite mass particles the equations 
describing three non-identical particles reduce correctly to those for a symmetric 
eigenfunction of a Hamiltonian for two identical particles plus a third particle. 
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4. The antisymmetric case 

For an  antisymmetric wavefunction 

exp( - A rl - A2r2) 

-exp(-A1r2- Azrl) c ~ , l p ~ ~ ~ ~ ~ ~ q r 2 ~ ~ ~ - q ~ 2 ~ l p ~ ~ ( ~ ~ l ~ ~  

CVlpr; r:[ eqri Ei( - qrl )IPPI(R)/p ! r1' r2 
'I {P  

(28) 
r l <  r2 

l l lP  

W r 1 ,  r2,O) = 1 
which is identical to the general three-particle series (3) with 

c,, = - C' v b . (29) 

The condition for an  antisymmetric function Y( r l ,  rz,  0) to be continuous at  
rl = r2 = r IS 

T ( r , r , n ) = O .  

For series (28) this implies 

c Cqrp = 0 for all k, 
k 

which automatically guarantees derivative continuity. 
Rewriting equation (30) as before gives 

The arbitrary coefficients arise when W (  k, I ,  0 )  = 0, that is when k = 21 + 4 n  + 2 ;  n = 
0 , 1 , 2 , .  . . . The equations for three non-identical particles reduce to the equations for 
the antisymmetric function (28) in the limit of the 1-3 and  2-3 potentials being equal, 
assuming that condition (29) applies. 

Applying (29) and  (23) to Coooo yields 

coooo = C boo0 = 0. 

Condition (29) determines the arbitrary coefficients of the general three-particle series 
with k = 21 + 4n completely. The arbitrary coefficients with k = 21 + 4n + 2 are still 
undetermined. The first of these occurs at k = 2 .  Thus the antisymmetric series (28) 
starts at k = 2 and propagates to higher values of k. This is in contrast with the series 
for the general three-particle system and the symmetric series which both start at  k = 0. 

5. Conclusions 

Once all non-arbitrary coefficients for the system of three distinguishable particles have 
been calculated, the special case with two of the particles identical may be obtained 
by making two of the interparticle potentials equal and  requiring the wavefunction to 
be either symmetric or  antisymmetric. Furthermore, the wavefunction describing a 
system of two non-interacting particles in the field of a third particle is simply obtained 
from the wavefunction for three non-identical interacting particles by setting the 
relevant potential term equal to zero. 

This shows that up  to the point of calculating the arbitrary coefficients, the case 
of two identical particles with either symmetric or antisymmetric functions and the 
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case of two non-interacting particles in the field of a third are given by the appropriate 
limit of the series for three non-identical interacting particles. That is, there is no need 
to specify the symmetry of the wavefunction, or  the potentials, until the quantisation 
condition which results from the requirement of a normalisable wavefunction is applied. 
When calculating the arbitrary coefficients and  the energy eigenvalues it is necessary 
to examine the asymptotic form of the wavefunction (Davis and  Maslen 1983b), and  
it is only here that the form of the potentials and the symmetry are required. 

It is interesting to note that the series for a symmetric function ( 2 4 )  starts at k = 0 
whereas the series for a n  antisymmetric function ( 2 8 )  starts at k = 2 .  In fact the 
wavefunctions to lowest order, when rl > r2 are 

q ( r ~ ,  r2, a )=exp(-Alr l -A2r2)  

for a symmetric function and 

q( rl,  r,, a )  -- ( r: - r:) exp( -A rl - A2r2) 

for an  antisymmetric function. This is clearly shown from the method of calculating 
the wavefunctions described in this paper, as the first arbitrary coefficient gives the 
lowest-order term in the series. This is less obvious in other methods. For example a 
helium-like atom in a 3S-state with no electron-electron interaction is described by a n  
antisymmetric sum of a product of hydrogen wavefunctions. The hydrogen wavefunc- 
tions contain all non-negative integral powers of r but it is only after some algebraic 
manipulation that the ro and  r1 terms are seen to vanish in the helium 3S wavefunction. 
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